Multiscale Adjacent Superpixel-Based Extended Multi-Attribute Profiles Embedded Multiple Kernel Learning Method for Hyperspectral Classification

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale Superpixel-Based Sparse Representation for Hyperspectral Image Classification †

Recently, superpixel segmentation has been proven to be a powerful tool for hyperspectral image (HSI) classification. Nonetheless, the selection of the optimal superpixel size is a nontrivial task. In addition, compared with single-scale superpixel segmentation, the same image segmented on a different scale can obtain different structure information. To overcome such a drawback also utilizing t...

متن کامل

Extended Averaged Learning Subspace Method for Hyperspectral Data Classification

Averaged learning subspace methods (ALSM) have the advantage of being easily implemented and appear to outperform in classification problems of hyperspectral images. However, there remain some open and challenging problems, which if addressed, could further improve their performance in terms of classification accuracy. We carried out experiments mainly by using two kinds of improved subspace me...

متن کامل

A Spectral-Texture Kernel-Based Classification Method for Hyperspectral Images

Classification of hyperspectral images always suffers from high dimensionality and very limited labeled samples. Recently, the spectral-spatial classification has attracted considerable attention and can achieve higher classification accuracy and smoother classification maps. In this paper, a novel spectral-spatial classification method for hyperspectral images by using kernel methods is invest...

متن کامل

An Extended Level Method for Efficient Multiple Kernel Learning

We consider the problem of multiple kernel learning (MKL), which can be formulated as a convex-concave problem. In the past, two efficient methods, i.e., Semi-Infinite Linear Programming (SILP) and Subgradient Descent (SD), have been proposed for large-scale multiple kernel learning. Despite their success, both methods have their own shortcomings: (a) the SD method utilizes the gradient of only...

متن کامل

Bilinear Formulated Multiple Kernel Learning for Multi-class Classification Problem

In this paper, we propose a method of multiple kernel learning (MKL) to inherently deal with multi-class classification problems. The performances of kernel-based classification methods depend on the employed kernel functions, and it is difficult to predefine the optimal kernel. In the framework of MKL, multiple types of kernel functions are linearly integrated with optimizing the weights for t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2020

ISSN: 2072-4292

DOI: 10.3390/rs13010050